If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+g=342
We move all terms to the left:
g^2+g-(342)=0
a = 1; b = 1; c = -342;
Δ = b2-4ac
Δ = 12-4·1·(-342)
Δ = 1369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1369}=37$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-37}{2*1}=\frac{-38}{2} =-19 $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+37}{2*1}=\frac{36}{2} =18 $
| 2(-2x+4-(10)=0 | | 29=w+478/26 | | g^2+g=320 | | 24(p+462)=768 | | -19n+71=-898 | | 27s-91=557 | | 5d=d-18 | | 43+18k=259 | | (72-x)=3x | | -660=-20(p+523) | | 116-x=198 | | X+3+12x=5 | | 11x-1=11x10 | | 5(b-75)=35 | | s-29/9=4 | | z-45/7=6 | | 4(2.5w+3.1)-2.75w=44.9 | | 4(v+-32)=-76 | | 8(j+7)=-32 | | −5=a/18 | | x-3(2x-7)=75 | | 3k+7/4=16 | | 2(-2x+4=10 | | y=5+2*1 | | y=5+2*3 | | 036y=18 | | 5x-21=76 | | -38+5k=57 | | y=5+2*5 | | 123=50x+8.5 | | 24(y−30)=4y+12 | | 68=2(r+17) |